
Finding and Solving Deadlocks in Multi-Threaded Java Code 1

Finding And Solving
Deadlocks In Multi-Threaded

Java Code
In Cooperation With ExitCertified

Dr Heinz M. Kabutz

Last updated 2012-07-20

© 2012 Heinz Kabutz – All Rights Reserved

Finding and Solving Deadlocks in Multi-Threaded Java Code

Copyright Notice

© 2012 Heinz Kabutz, All Rights Reserved

No part of this course material may be reproduced without
the express written permission of the author, including
but not limited to: blogs, books, courses, public
presentations.

A license is hereby granted to use the ideas and source
code in this course material for your personal and
professional software development.

Please contact heinz@javaspecialists.eu if you are in any
way uncertain as to your rights and obligations.

2

Concurrency Specialist Course v1.1 3

Short Introduction To Course Authors

Dr Heinz Kabutz
– Born in Cape Town, South Africa, now lives in Greece / Europe

– Created The Java Specialists’ Newsletter
• http://www.javaspecialists.eu/archive/archive.html

– One of the first Sun Java Champions
• https://java-champions.dev.java.net

Victor Grazi
– Former salesman from New York

• Realized early on that programming was more fun than selling!

– Core Java Development at Credit Suisse Client Technology Services

– One of the newest Oracle Java Champions

– Creator of Java Concurrent Animated www.jconcurrency.com

1: Introduction

Concurrency Specialist Course v1.1 4

Short Introduction To Brian Goetz

Brian Goetz wrote seminal
masterpiece "Java
Concurrency in Practice"
– Our recommended book for

Java concurrency

– Course uses this as a basis

Now is Oracle's "Java
Language Architect"

Most thorough text on how
to deal with Java concurrency
in everyday work

1: Introduction
1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code

Workshop Structure

 2 x 50 minute lectures, with break in between

 1 x 50 minute lab, where you get to solve a liveness issue
– Exact time depends on how quick you are

– Download it from here: http://tinyurl.com/conc-zip

Your workshop page:
– http://javaspecialists.eu/courses/concurrency/exitcertified.jsp

5

Finding and Solving Deadlocks in Multi-Threaded Java Code

Chat Room

 http://www.javaspecialists.eu/forum/chat/
– We will be in the "Public" channel

6

Finding and Solving Deadlocks in Multi-Threaded Java Code

Who Are The Participants

Skill level
– 31 either complete beginners or no practical experience

– 124 intermediate

– 71 advanced programmers

– 3 super advanced
• Two of which end their surname in "ev"

– 38 unspecified

Our focus will be mainly on the intermediate and
advanced programmers
– Will give an introduction to threading, what it is and why we need it

7

Finding and Solving Deadlocks in Multi-Threaded Java Code

A Boat Called "Java"

 In Greek, the Latin "J" is translated as "TZ" and "V" as "B"
– So we get TZABA

8

Finding and Solving Deadlocks in Multi-Threaded Java Code 9

1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code 10

Questions

Please please please please ask questions!

 Interrupt me at any time
– Type it into chat: http://www.javaspecialists.eu/forum/chat/
– Or put up your hand (little hand icon) and I will unmute you

• Make sure your microphone volume is turned up

 There are some stupid questions
– They are the ones you didn’t ask

– Once you’ve asked them, they are not stupid anymore

 The more you ask, the more we all learn

1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code 11

The Concurrency Specialist Course

Course Contents
– Introduction

– Thread Safety

– Sharing Objects

– Composing Objects

– Building Blocks

– Task Execution

– Cancellation and Shutdown

 http://www.javaspecialists.eu/courses/concurrency.jsp

– Applying Thread Pools

– SwingWorker and Fork/Join

– Avoiding Liveness Hazards

– Performance and Scalability

– Testing Concurrent Programs

– Building Custom Synchronizers

1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code 12

Multiple Processes

 Time slicing allows us to run many programs at once
– Illusion; our O/S swaps between different processes very quickly

Each process typically runs in its own memory space
– Inter-process communication is expensive

1.1: H
istory O

f C
oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code 13

Why Use Threads?

 Threads are software abstractions to help us utilize the
available hardware

 Threads are like lightweight processes, sharing the same
memory space

Quick for scheduler to swap between threads

Performance can improve if we utilize all the cores

 Threading can also simplify coding
– Our systems can be written with better OO principles

– Independent workflows do not have to know about each other

1.1: H
istory O

f C
oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

Let's Go Fast Fast Fast

 In 2000, Intel predicted 10GHz chips on desktop by 2011
– http://www.zdnet.com/news/taking-chips-to-10ghz-and-beyond/96055

Core i7 990x hit the market early 2011
– 3.46GHz clock stretching up to 3.73 GHz in turbo mode

– 6 processing cores

– Running in parallel, we get 22GHz of processing power!

14
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

Moore's Law

Stated in 1965 that for the next 10 years, the number or
transistors would double every two years
– The prediction was only made for 10 years, but it is still true today

Clock speed has leveled off
– Heat buildup means we struggle to go beyond 4GHz

– Moore's Law has often been misunderstood as clock speed doubling
every 2 years

 The way to scale is to have lots of cores working together

15
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

CPU / Core / Hardware Thread

 The Intel i7-3960X

One CPU socket

Six activated cores

Each core supports two
hyperthreads
– Each core can only execute a

single instruction at a time, but
the data is fetched in parallel

 Total of 12 threads

Runtime.getRuntime().availableProcessors() = 12

16
1.2: B

enefits O
f Threads

Finding and Solving Deadlocks in Multi-Threaded Java Code

Japanese 'K' Computer

 In June 2011, could calculate 8.2 petaFLOPS
– 8 200 000 000 000 000 floating point operations per second

– Intel 8087 was 30 000 FLOPS, 273 billion times slower

– 548,352 cores from 68,544 2GHz 8-Core SPARC64 VIIIfx processors

By November 2011, it had surpassed 10 petaFLOPS

17
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

"Sequoia" At Lawrence Livermore National Lab

Used by USA's National Nuclear Security Administration
to simulate nuclear bombs

 June 2012: Delivers 16 petaflops
– 1.6 million cores

– 1.6 petabytes of memory

18
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

Utilization Of Hardware

 Threading is software abstraction to keep hardware busy
– Otherwise, why put up with safety and liveness issues?

We want to utilize all our CPUs with application code
– Having too many serial sections means that not all CPUs are working

– Too much locking means we are busy with system code

19
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code 20

Threading Models

Preemptive multithreading (Native Threads)
– Operating system is responsible for forcing a context switch

– Threads can be swapped in the middle of an operation
• For example half-way through balance = balance + 100

Cooperative multithreading (Green Threads)
– Threads give up control at a stopping point

• Yield, sleep, wait

– Infinite loops could never give up control

Which One?
– Preemptive (native) is safer, but we get race conditions

– In modern JDKs, preemptive is used

1.1: H
istory O

f C
oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code 21

10: Avoiding Liveness
Hazards

Safety first!

Finding and Solving Deadlocks in Multi-Threaded Java Code 22

10: Avoiding Liveness Hazards

 Fixing safety problems can cause liveness problems
– Don't indiscriminately sprinkle "synchronized" into your code

 Liveness hazards can happen through
– Lock-ordering deadlocks

• Typically when you lock two locks in different orders
• Requires global analysis to make sure your order is consistent

–Lesson: only ever hold a single lock per thread!

– Resource deadlocks
• This can happen with bounded queues or similar mechanisms

meant to bound resource consumption

10: Avoiding Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

10.1 Deadlock

Avoiding Liveness Hazards

23

Finding and Solving Deadlocks in Multi-Threaded Java Code 24

10.1 Deadlock

Classic problem is that of the "dining philosophers"
– We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
–sym - together, such as "symphony"
–poto - drink

• Ancient Greek philosophers used to get together to drink & think

 In our example, a philosopher needs two glasses to drink
– First he takes the right one, then the left one

– When he finishes drinking, he returns them and carries on thinking

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Legends For Example

 Thinking philosopher

Drinking philosopher

Changing state philosopher

Available cup

 Taken cup

25

5

5

5

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Table Is Ready, All Philosophers Are Thinking

26

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosophers 5 Wants To Drink, Takes Right Cup

27

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Is Now Drinking With Both Cups

28

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosophers 3 Wants To Drink, Takes Right Cup

29

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Is Now Drinking With Both Cups

30

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosophers 2 Wants To Drink, Takes Right Cup

But he has to wait for
Philosopher 3 to
finish his
drinking
session

31

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Finished Drinking, Returns Right
Cup

32

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Is Now Drinking With Both Cups

33

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Returns Left Cup

34

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Drinking Philosophers In Limbo

 The standard rule is that every philosopher first picks up
the right cup, then the left
– If all of the philosophers want to drink and they all pick up the right

cup, then they all are holding one cup but cannot get the left cup

35
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

A Deadlock Can Easily Happen With This Design

36

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Wants To Drink, Takes Right Cup

37

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Wants To Drink, Takes Right Cup

38

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Wants To Drink, Takes Right Cup

39

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Wants To Drink, Takes Right Cup

40

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Wants To Drink, Takes Right Cup

41

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlock!

All the philosophers are
waiting for their left
cups, but they will
never become
available

42

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Resolving Deadlocks

Deadlocks can be discovered automatically by searching
the graph of call stacks, looking for circular dependencies
– ThreadMXBean can find deadlocks for us, but cannot fix them

 In databases, the deadlock is resolved by one of the
queries being aborted with an exception
– The query could then be retried

 Java does not have this functionality
– When we get a deadlock, there is no clean way to recover from it

– Prevention is better than the cure

43
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

How Do We Discover Deadlocks?

A lot of Java code contains subtle locking bugs
– Calling methods in different orders could cause a deadly embrace

– Calling alien methods could cause a call-back

– Limiting resources can cause deadlocks with dependent actions

Most of the time, deadlocks do not manifest themselves
– Usually never during testing

– Seldom during production, only if the system is really busy
• Often you will need to run the application for 5 days before it

happens, usually on a Friday afternoon to ruin your weekend

44
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Lock-ordering Deadlocks

 This code will cause deadlocks if called by two threads

45

public class LeftRightDeadlock {
 private final Object left = new Object();
 private final Object right = new Object();
 public void leftRight() {
 synchronized (left) {
 synchronized (right) {
 doSomething();
 }
 }
 }
 public void rightLeft() {
 synchronized (right) {
 synchronized (left) {
 doSomethingElse();
 }
 }
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Interleaving Of Call Sequence Causes Deadlock

46

A

B

lock left

lock right

leftRight()

rightLeft()

BLOCKED

trying to lock right

BLOCKED

trying to lock left

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Global Order Of Locks

A program will be free of lock-ordering deadlocks if all
threads acquire the locks they need in a fixed global order
– Thus we can solve the deadlock by changing rightLeft() to

47

 public void rightLeft() {
 synchronized (left) {
 synchronized (right) {
 doSomethingElse();
 }
 }
 }

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Global Order With Boozing Philosophers

We can solve the deadlock with the "dining philosophers"
by requiring that locks are always acquired in a set order
– For example, we can make a rule that philosophers always first take

the cup with the largest number

– And return the cup with the lowest number first

48
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Global Lock Ordering

We start with all the
philosophers thinking

49

1

25

4 3
4

3

21

5

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Takes Cup 5

Cup 5 has higher number
– Remember our rule!

50

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Takes Cup 2

Must take the cup with
the higher number
first
– In this case

cup 2

51

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Takes Cup 3

52

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Takes Cup 4

53

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Takes Cup 1 - Drinking

54

1

25

4 34

3

2

5

1 10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Returns Cup 1

Cups are returned in the
opposite order to what
they are acquired

55

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Takes Cup 1 - Drinking

56

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Returns Cup 1

57

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Returns Cup 2

58

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Takes Cup 2 - Drinking

59

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Returns Cup 5

60

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Takes Cup 5

61

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Returns Cup 2

62

1

25

4 34

2

5

1

3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Returns Cup 3

63

1

25

4 4

5

1 2

3

3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Takes Cup 3 - Drinking

64

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Returns Cup 3

65

1

25

4 3

2

5

1

3

4

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Returns Cup 4

66

1

25

3

2

5

1

4

4

3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Takes Cup 4 - Drinking

67

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Returns Cup 4

68

1

25

4 3

3

21

4
5

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Returns Cup 5

69

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Dynamic Lock Order Deadlocks

 The LeftRightDeadlock example had an obvious deadlock

Often, it is not obvious what the lock instances are, e.g.

70

public boolean transferMoney(
 Account from, Account to,
 DollarAmount amount) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Checking Locks Are Held

 In our doActualTransfer(), assert we hold both locks

71

private boolean doActualTransfer(
 Account from, Account to, DollarAmount amount) {
 assert Thread.holdsLock(from);
 assert Thread.holdsLock(to);
 if (from.getBalance().compareTo(amount) >= 0) {
 from.debit(amount);
 to.credit(amount);
 return true;
 }
 return false;
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Causing The Deadlock With Transferring Money

Giorgos has accounts in Switzerland and in Greece
– He keeps on transferring money between them

• Whenever new taxes are announced, he brings money into Greece
• Whenever he gets any money paid, he transfers it to Switzerland
• Sometimes these transfers can coincide

 Thread 1 is moving money from UBS to Alpha Bank

 Thread 2 is moving money from Alpha Bank to UBS

 If this happens at the same time, it can deadlock

72

transferMoney(ubs, alpha, new DollarAmount(1000));

transferMoney(alpha, ubs, new DollarAmount(2000));

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Fixing Dynamic Lock-Ordering Deadlocks

 The locks for transferMoney() are outside our control
– They could be sent to us in any order

We can induce an ordering on the locks
– For example, we can use System.identityHashCode() to get a number

representing this object
• Since this is a 32-bit int, it is technically possible that two different

objects have exactly the same identity hash code
• In that case, we have a static lock to avoid a deadlock

73
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

public boolean transferMoney(Account from, Account to,
 DollarAmount amount) {
 int fromHash = System.identityHashCode(from);
 int toHash = System.identityHashCode(to);
 if (fromHash < toHash) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 } else if (fromHash > toHash) {
 synchronized (to) {
 synchronized (from) {
 return doActualTransfer(from, to, amount);
 }
 }
 } else {
 synchronized (tieLock) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 }
 }
}

74
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Imposing Natural Order

 Instead of System.identityHashCode(), we define an order
– Such as account number, employee number, etc.

– Or an order defined for the locks used

75

public class MonitorLock implements Comparable<MonitorLock> {
 private static AtomicLong nextLockNumber = new AtomicLong();
 private final long lockNumber = nextLockNumber.getAndIncrement();
 public int compareTo(MonitorLock o) {
 if (lockNumber < o.lockNumber) return -1;
 if (lockNumber > o.lockNumber) return 1;
 return 0;
 }
 public static MonitorLock[] makeGlobalLockOrder(
 MonitorLock... locks) {
 MonitorLock[] result = locks.clone();
 Arrays.sort(result);
 return result;
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlocks Between Cooperating Objects

 In this example, the deadlock is more subtle
– Taxi is an individual taxi with a location and a destination

– Dispatcher represents a fleet of taxis

Spot the deadlock

76
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Taxi, Representing An Individual Vehicle
public class Taxi {
 @GuardedBy("this")
 private Point location, destination;
 private final Dispatcher dispatcher;

 public Taxi(Dispatcher dispatcher) {
 this.dispatcher = dispatcher;
 }

 public synchronized Point getLocation() {
 return location;
 }

 public synchronized void setLocation(
 Point location) {
 this.location = location;
 if (location.equals(destination))
 dispatcher.notifyAvailable(this);
 }
}

77
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Dispatcher: Managing A Fleet Of Taxis
public class Dispatcher {
 @GuardedBy("this")
 private final Set<Taxi> taxis = new HashSet<>();
 @GuardedBy("this")
 private final Set<Taxi> availableTaxis = new HashSet<>();

 public synchronized void notifyAvailable(Taxi taxi) {
 availableTaxis.add(taxi);
 }

 public synchronized Image getImage() {
 Image image = new Image();
 for (Taxi taxi : taxis) {
 image.drawMarker(taxi.getLocation());
 }
 return image;
 }
}

78
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

How To Deadlock The Taxi Industry

Or in Greece you can simply announce that you will
deregulate the taxi industry - that causes real deadlocks
– In 2011, at height of tourist season, taxis went on strike for 3 weeks!

79

A setLocation()

BLOCKED

synchronized(taxi)
dispatcher.notifyAvailable()
synchronized(dispatcher)

B getImage()
synchronized(dispatcher)

taxi.getLocation()
synchronized(taxi)

BLOCKED

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Open Calls

Calling an alien method with a lock held is difficult to
analyze and therefore risky

Both Taxi and Dispatcher break this rule

Calling a method with no locks held is called an open call
– Makes it much easier to reason about liveness

80
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Refactored Taxi.setLocation()

We should not call alien methods whilst holding locks

Here we split the method up into parts that need the lock
and those that call alien methods

81

public void setLocation(Point location) {
 boolean reachedDestination;
 synchronized (this) {
 this.location = location;
 reachedDestination = location.equals(destination);
 }
 if (reachedDestination) {
 dispatcher.notifyAvailable(this);
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Refactored Dispatcher.getImage()

We make a copy of the set to prevent race conditions

82

public Image getImage() {
 Set<Taxi> copy;
 synchronized (this) {
 copy = new HashSet<>(taxis);
 }
 Image image = new Image();
 for (Taxi taxi : copy) {
 image.drawMarker(taxi.getLocation());
 }
 return image;
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Benefit Of Open Calls

Strive to use open calls throughout your program

Programs that rely on open calls are far easier to analyze
for deadlock-freedom than those that allow calls to alien
methods with locks held

Alien method calls with lock held are probably the biggest
cause of deadlocks "in the field"

83
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Open Call In Vector

 In Sun Java 6 Vector.writeObject() method is synchronized
– This is to provide thread safety during writing

– However, since it calls the alien "defaultWriteObject()" it can
deadlock
• http://www.javaspecialists.eu/archive/Issue184.html

84

private synchronized void writeObject(ObjectOutputStream s)
 throws IOException {
 s.defaultWriteObject();
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

IBM Avoids This Problem With An Open Call
private void writeObject(ObjectOutputStream stream)
 throws IOException {
 Vector<E> cloned = null;
 // this specially fix is for a special dead-lock in customer
 // program: two vectors refer each other may meet dead-lock in
 // synchronized serialization. Refer CMVC-103316.1
 synchronized (this) {
 try {
 cloned = (Vector<E>) super.clone();
 cloned.elementData = elementData.clone();
 } catch (CloneNotSupportedException e) {
 // no deep clone, ignore the exception
 }
 }
 cloned.writeObjectImpl(stream);
}

private void writeObjectImpl(ObjectOutputStream stream)
 throws IOException {
 stream.defaultWriteObject();
}

85
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

OpenJDK 7 Also Uses An Open Call
private void writeObject(ObjectOutputStream s)
 throws IOException {
 final ObjectOutputStream.PutField fields = s.putFields();
 final Object[] data;
 synchronized (this) {
 fields.put("capacityIncrement", capacityIncrement);
 fields.put("elementCount", elementCount);
 data = elementData.clone();
 }
 fields.put("elementData", data);
 s.writeFields();
}

86
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Resource Deadlocks

We can also cause deadlocks waiting for resources

 For example, say you have two DB connection pools
– Some tasks might require connections to both databases

– Thus thread A might hold semaphore for D1 and wait for D2, whereas
thread B might hold semaphore for D2 and be waiting for D1

 Thread dump and ThreadMXBean does not show this as a
deadlock!

87
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Our DatabasePool - Connect() And Disconnect()

public class DatabasePool {
 private final Semaphore connections;
 public DatabasePool(int connections) {
 this.connections = new Semaphore(connections);
 }

 public void connect() {
 connections.acquireUninterruptibly();
 System.out.println("DatabasePool.connect");
 }

 public void disconnect() {
 System.out.println("DatabasePool.disconnect");
 connections.release();
 }
}

88
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

ThreadMXBean Does Not Detect This Deadlock

DatabasePool.connect
DatabasePool.connect

89
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Dependent Tasks Causing Liveness Issues

 Tasks that depend on others in pool can cause a thread-
starvation deadlock

90

ExecutorService pool = Executors.newFixedThreadPool(3);
final CountDownLatch latch = new CountDownLatch(4);
for (int i = 0; i < 4; i++) {
 pool.submit(new Runnable() {
 public void run() {
 System.out.println("countdown");
 latch.countDown();
 try {
 System.out.println("waiting");
 latch.await();
 } catch (InterruptedException e) {
 System.out.println("interrupting");
 Thread.currentThread().interrupt();
 }
 System.out.println("done");
 }
 });
}

8.1: Tasks A
nd Execution Policies

Finding and Solving Deadlocks in Multi-Threaded Java Code

Thread Pool Blocked Up

All the threads are waiting for "task" to be completed
– Bounded thread pools and bounded queues can cause deadlocks

91

task

work queue 0 WAITING

1 WAITING

2 WAITING

8.1: Tasks A
nd Execution Policies

Finding and Solving Deadlocks in Multi-Threaded Java Code

10.2 Avoiding And
Diagnosing Deadlocks

Avoiding Liveness Hazards

92

Finding and Solving Deadlocks in Multi-Threaded Java Code 93

10.2 Avoiding And Diagnosing Deadlocks

 If you only ever acquire one lock, you cannot get a lock-
ordering deadlock
– This is the easiest way to avoid deadlocks, but not always practical

 If you need to acquire multiple locks, include lock
ordering in your design
– Important to specify and document possible lock sequences

– Identify where multiple locks could be acquired

– Do a global analysis to ensure that lock ordering is consistent
• This can be extremely difficult in large programs

Use open calls whenever possible
– Do not call alien methods whilst holding a lock

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Unit Testing For Lock Ordering Deadlocks

Code typically has to be called many times before a
deadlock happens

How many times do you need to call it to prove that there
is no deadlock?
– Nondeterministic unit tests are bad - they should either always pass

or always fail

94
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Adding A Sleep To Cause Deadlocks

 In the transferMoney() method, a deadlock occurs if after
the first lock is granted, the first thread is swapped out
and another thread requests the second lock

We can force this to happen by sleeping a short while
after requesting the first lock

95

public class Bank {
 public boolean transferMoney(Account from, Account to,
 DollarAmount amount) {
 synchronized (from) {
 sleepAWhileForTesting();
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 }
 protected void sleepAWhileForTesting() {}
}

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

In Our Unit Test We Override The Class

We make the sleepAWhileForTesting() method sleep
– In production, when we use only the normal Bank, the empty method

will be optimized away by the HotSpot compiler

96

public class SlowBank extends Bank {
 private final long timeout;
 private final TimeUnit unit;
 public SlowBank(long timeout, TimeUnit unit) {
 this.timeout = timeout;
 this.unit = unit;
 }
 protected void sleepAWhileForTesting() {
 try {
 unit.sleep(timeout);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
}

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Verifying Thread Deadlocks

 ThreadMXBean has two methods for finding deadlocks
– findMonitorDeadlockedThreads()

• Includes only "monitor" locks, i.e. synchronized
• Only way to find deadlocks in Java 5

– findDeadlockedThreads()
• Includes "monitor" and "owned" (Java 5) locks
• Preferred method to test for deadlocks
• But, does not find deadlocks between semaphores

– See http://www.javaspecialists.eu/archive/Issue130.html

97
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

public class BankDeadlockTest {
 private final static ThreadMXBean tmb =
 ManagementFactory.getThreadMXBean();

 private void checkThatThreadTerminates(Thread thread)
 throws InterruptedException {
 for (int i = 0; i < 2000; i++) {
 thread.join(50);
 if (!thread.isAlive()) return;
 if (isThreadDeadlocked(thread.getId())) {
 fail("Deadlock detected!");
 }
 }
 fail(thread + " did not terminate in time");
 }

 private boolean isThreadDeadlocked(long tid) {
 long[] ids = tmb.findDeadlockedThreads();
 if (ids == null) return false;
 for (long id : ids) {
 if (id == tid) return true;
 }
 return false;
 }

98
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

 @Test
 public void testForTransferDeadlock()
 throws InterruptedException {
 final Account alpha = new Account(new DollarAmount(1000));
 final Account ubs = new Account(new DollarAmount(1000000));
 final Bank bank = new SlowBank(100, TimeUnit.MILLISECONDS);

 Thread alphaToUbs = new Thread("alphaToUbs") {
 public void run() {
 bank.transferMoney(alpha, ubs, new DollarAmount(100));
 }
 };
 Thread ubsToAlpha = new Thread("ubsToAlpha") {
 public void run() {
 bank.transferMoney(ubs, alpha, new DollarAmount(100));
 }
 };

 alphaToUbs.start();
 ubsToAlpha.start();

 checkThatThreadTerminates(alphaToUbs);
 }
}

99
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

We see the deadlock within about 100 milliseconds

 If we fix the transferMoney() method, it also completes
within about 100 milliseconds
– This is the time that we are sleeping for testing purposes

Remember that the empty sleepAWhileForTesting()
method will be optimized away by HotSpot

100

Output With Broken TransferMoney() Method

junit.framework.AssertionFailedError: Deadlock detected!
 at BankDeadlockTest.checkThatThreadTerminates(BankDeadlockTest.java:20)
 at BankDeadlockTest.testForTransferDeadlock(BankDeadlockTest.java:55)

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Timed Lock Attempts

Another technique for solving deadlocks is to use the
timed tryLock() method of Java 5 locks (more in ch 13)

 Two things to consider
– When a timed lock attempt fails, we do not necessarily know why

• Could be deadlock
• Could be another thread holding the lock whilst in an infinite loop
• Could be some thread just taking a lot longer than expected

– ThreadMXBean will show the thread as deadlocked whilst it is
waiting for the lock

101
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlock Analysis With Thread Dumps

 The ThreadMXBean can be invoked directly to find
deadlocks between monitors or Java 5 locks

However, we can also cause a thread dump in many ways:
– Ctrl+Break on Windows or Ctrl-\ on Unix

– Invoking "kill -3" on the process id

– Calling jstack on the process id
• Only shows deadlocks since Java 6

 Intrinsic locks typically show more information of where
they were acquired than the explicit Java 5 locks

102
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlock Analysis With Thread Dumps

 Thread dump from a real system (names changed)

 It is useful to have unique threads names

 The stack trace confirms the deadlock

103

Found one Java-level deadlock:
=============================
"ApplicationServerThread-0":
 waiting to lock monitor 0x080f0cdc
 (object 0x650f7f30, a MumbleDBConnection),
 which is held by "ApplicationServerThread-1"

"ApplicationServerThread-1":
 waiting to lock monitor 0x080f0ed4
 (object 0x6024ffb0, a MumbleDBCallableStatement),
 which is held by "ApplicationServerThread-0"

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Stack Information Shows Where It Comes From
Java stack information for the threads listed above:
===
"ApplicationServerThread-0":
 at MumbleDBConnection.remove_statement
 - waiting to lock <0x650f7f30> (a MumbleDBConnection)
 at MumbleDBStatement.close
 - locked <0x6024ffb0> (a MumbleDBCallableStatement)
 ...

"ApplicationServerThread-1":
 at MumbleDBCallableStatement.sendBatch
 - waiting to lock <0x6024ffb0>
 (a MumbleDBCallableStatement)
 at MumbleDBConnection.commit
 - locked <0x650f7f30> (a MumbleDBConnection)
 ...

Found 1 deadlock.

104
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

What Caused The Deadlock?

 Inside the JDBC driver, different calls acquired locks in
different orders
– JDBC vendor was trying to build a thread-safe driver

• But then ended up writing a potential deadlock

– This could be fixed in the JDBC driver by imposing a global order

However, in the system the JDBC connection was shared
by multiple threads
– This caused the bug to appear

Solution: single threaded access to each individual
connection

105
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Stopping Deadlock Victims

 In extreme situations threads that are deadlocked in the
WAITING state can be stopped as deadlock victims

 This only works with "owned" Java 5 locks, not monitors
– A thread in the BLOCKED state cannot be stopped

We can throw a special exception with Thread.stop()

106

public class DeadlockVictimError extends Error {
 private final Thread victim;
 public DeadlockVictimError(Thread victim) {
 super("Deadlock victim: " + victim);
 this.victim = victim;

 }
 public Thread getVictim() { return victim; }
}

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

public class DeadlockArbitrator {
 private static final ThreadMXBean tmb =
 ManagementFactory.getThreadMXBean();

 public boolean tryResolveDeadlock() throws InterruptedException {
 return tryResolveDeadlock(3, 1, TimeUnit.SECONDS);
 }

 public boolean tryResolveDeadlock(
 int attempts, long timeout, TimeUnit unit)
 throws InterruptedException {
 for (int i = 0; i < attempts; i++) {
 long[] ids = tmb.findDeadlockedThreads();
 if (ids == null) return true;
 Thread t = findThread(ids[i % ids.length]);
 if (t == null)
 throw new IllegalStateException("Could not find thread");
 t.stop(new DeadlockVictimError(t));
 unit.sleep(timeout);
 }
 return false;
 }
 private Thread findThread(long id) {
 for (Thread thread : Thread.getAllStackTraces().keySet()) {
 if (thread.getId() == id) return thread;
 }
 return null;
 }
}

107
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Only use in extreme circumstances
– Code that is outside your control and that deadlocks

– Where you cannot prevent the deadlock

Remember, it only works with Java 5 locks (more later)

108

Applicability Of DeadlockArbitrator 10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

10.3 Other Liveness Hazards

Avoiding Liveness Hazards

109

Finding and Solving Deadlocks in Multi-Threaded Java Code 110

10.3 Other Liveness Hazards

Deadlock is the most common liveness hazard
– Even though there is no way to cleanly recover, it is usually fairly

easy to recognize with the thread dumps

However, other liveness hazards can be more difficult to
find, for example
– Starvation

– Missed signals (covered in Chapter 14)

– Livelock

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 111

Threading Problems – Starvation

 In concurrent applications, a thread could perpetually be
denied resources.

Starvation can cause OutOfMemoryError or prevent a
program from ever completing.

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 112

Starvation In Java

Most common situation is when some low priority thread
is ignored for long periods of time, preventing it from ever
finishing work

 In Java, thread priorities are just a hint for the operating
system. The mapping to system priorities is system
dependent

 Tweaking thread priorities might result in starvation

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

ReadWriteLock Starvation

When readers are given priority, then writers might never
be able to complete (Java 5)

But when writers are given priority, readers might be
starved (Java 6)

Only use ReadWriteLock when you are sure that you will
not continuously be acquiring locks

See http://www.javaspecialists.eu/archive/Issue165.html

113
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

Java 5 ReadWriteLock Starvation

We first acquire some
read locks

We then acquire one
write lock

Despite write lock waiting,
read locks are still issued

 If enough read locks are
issued, write lock will
never get a chance and
the thread will be starved!

114
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

ReadWriteLock In Java 6

 Java 6 changed the policy and
now read locks have to wait
until the write lock has been
issued

However, now the readers can
be starved if we have a lot of
writers

115
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 116

Livelock

 Thread is running, but still not making progress

 Typically forever retrying a failed operation
– Eventually you need to give up

Often occurs in transactional messaging applications,
where the messaging infrastructure rolls back a
transaction if a message cannot be processed
successfully, and puts it back at the head of the queue.
– This form of livelock often comes from overeager error-recovery

code that mistakenly treats an unrecoverable error as a recoverable
one.

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 117

Real-World Scenario

 Two polite people meet in a narrow corridor. Each steps
to the side to make room for the other. They keep on
doing this at the same time, never getting past each other.
– Fortunately people are not that stupid

• But computers are!

Can happen especially in code that tries to recover from a
deadlock situation
– Only possible with Java 5 locks, in a controlled fashion

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

Livelock In IntelliJ IDEA

118
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 119

10.4: Where To From Here?

Finding and Solving Deadlocks in Multi-Threaded Java Code

The Java Specialists' Newsletter

Written for programmers who use Java professionally

Please subscribe for free here:
– http://www.javaspecialists.eu/archive/subscribe.jsp

120

Finding and Solving Deadlocks in Multi-Threaded Java Code

Advanced Java Training With ExitCertified

Concurrency Specialist Course
– More of what we did today, also looking at safety, Fork/Join, etc.

 Java Specialist Master Course
– Threading, Java NIO, reflection, data structures, performance

Design Patterns Course
– The most useful Gang-of-Four patterns, in Java

 http://www.javaspecialists.eu

 http://www.exitcertified.com/sun-microsystems-training/
java-concurrency-JAV-404.html

121

Finding and Solving Deadlocks in Multi-Threaded Java Code 122

10: Exercises

Avoiding Liveness Hazards

Finding and Solving Deadlocks in Multi-Threaded Java Code 123

Exercise 10.1: Test Java2Demo For Liveness

Run the Java2Demo and check for liveness, such as
– Deadlock

• You would notice that part of the program stops responding

– Livelock
• Typically your CPU is very high, without any real progress made

Please download the workshop exercises from:
– http://tinyurl.com/conc-zip

Workshop support information is available here:
– http://javaspecialists.eu/courses/concurrency/exitcertified.jsp

10: Exercises

Finding and Solving Deadlocks in Multi-Threaded Java Code 124

The End – Thank You!

http://www.javaspecialists.eu

